
Finding and Solving Deadlocks in Multi-Threaded Java Code 1

Finding And Solving
Deadlocks In Multi-Threaded

Java Code
In Cooperation With ExitCertified

Dr Heinz M. Kabutz

Last updated 2012-07-20

© 2012 Heinz Kabutz – All Rights Reserved

Finding and Solving Deadlocks in Multi-Threaded Java Code

Copyright Notice

© 2012 Heinz Kabutz, All Rights Reserved

No part of this course material may be reproduced without
the express written permission of the author, including
but not limited to: blogs, books, courses, public
presentations.

A license is hereby granted to use the ideas and source
code in this course material for your personal and
professional software development.

Please contact heinz@javaspecialists.eu if you are in any
way uncertain as to your rights and obligations.

2

Concurrency Specialist Course v1.1 3

Short Introduction To Course Authors

Dr Heinz Kabutz
– Born in Cape Town, South Africa, now lives in Greece / Europe

– Created The Java Specialists’ Newsletter
• http://www.javaspecialists.eu/archive/archive.html

– One of the first Sun Java Champions
• https://java-champions.dev.java.net

Victor Grazi
– Former salesman from New York

• Realized early on that programming was more fun than selling!

– Core Java Development at Credit Suisse Client Technology Services

– One of the newest Oracle Java Champions

– Creator of Java Concurrent Animated www.jconcurrency.com

1: Introduction

Concurrency Specialist Course v1.1 4

Short Introduction To Brian Goetz

Brian Goetz wrote seminal
masterpiece "Java
Concurrency in Practice"
– Our recommended book for

Java concurrency

– Course uses this as a basis

Now is Oracle's "Java
Language Architect"

Most thorough text on how
to deal with Java concurrency
in everyday work

1: Introduction
1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code

Workshop Structure

 2 x 50 minute lectures, with break in between

 1 x 50 minute lab, where you get to solve a liveness issue
– Exact time depends on how quick you are

– Download it from here: http://tinyurl.com/conc-zip

Your workshop page:
– http://javaspecialists.eu/courses/concurrency/exitcertified.jsp

5

Finding and Solving Deadlocks in Multi-Threaded Java Code

Chat Room

 http://www.javaspecialists.eu/forum/chat/
– We will be in the "Public" channel

6

Finding and Solving Deadlocks in Multi-Threaded Java Code

Who Are The Participants

Skill level
– 31 either complete beginners or no practical experience

– 124 intermediate

– 71 advanced programmers

– 3 super advanced
• Two of which end their surname in "ev"

– 38 unspecified

Our focus will be mainly on the intermediate and
advanced programmers
– Will give an introduction to threading, what it is and why we need it

7

Finding and Solving Deadlocks in Multi-Threaded Java Code

A Boat Called "Java"

 In Greek, the Latin "J" is translated as "TZ" and "V" as "B"
– So we get TZABA

8

Finding and Solving Deadlocks in Multi-Threaded Java Code 9

1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code 10

Questions

Please please please please ask questions!

 Interrupt me at any time
– Type it into chat: http://www.javaspecialists.eu/forum/chat/
– Or put up your hand (little hand icon) and I will unmute you

• Make sure your microphone volume is turned up

 There are some stupid questions
– They are the ones you didn’t ask

– Once you’ve asked them, they are not stupid anymore

 The more you ask, the more we all learn

1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code 11

The Concurrency Specialist Course

Course Contents
– Introduction

– Thread Safety

– Sharing Objects

– Composing Objects

– Building Blocks

– Task Execution

– Cancellation and Shutdown

 http://www.javaspecialists.eu/courses/concurrency.jsp

– Applying Thread Pools

– SwingWorker and Fork/Join

– Avoiding Liveness Hazards

– Performance and Scalability

– Testing Concurrent Programs

– Building Custom Synchronizers

1: Introduction

Finding and Solving Deadlocks in Multi-Threaded Java Code 12

Multiple Processes

 Time slicing allows us to run many programs at once
– Illusion; our O/S swaps between different processes very quickly

Each process typically runs in its own memory space
– Inter-process communication is expensive

1.1: H
istory O

f C
oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code 13

Why Use Threads?

 Threads are software abstractions to help us utilize the
available hardware

 Threads are like lightweight processes, sharing the same
memory space

Quick for scheduler to swap between threads

Performance can improve if we utilize all the cores

 Threading can also simplify coding
– Our systems can be written with better OO principles

– Independent workflows do not have to know about each other

1.1: H
istory O

f C
oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

Let's Go Fast Fast Fast

 In 2000, Intel predicted 10GHz chips on desktop by 2011
– http://www.zdnet.com/news/taking-chips-to-10ghz-and-beyond/96055

Core i7 990x hit the market early 2011
– 3.46GHz clock stretching up to 3.73 GHz in turbo mode

– 6 processing cores

– Running in parallel, we get 22GHz of processing power!

14
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

Moore's Law

Stated in 1965 that for the next 10 years, the number or
transistors would double every two years
– The prediction was only made for 10 years, but it is still true today

Clock speed has leveled off
– Heat buildup means we struggle to go beyond 4GHz

– Moore's Law has often been misunderstood as clock speed doubling
every 2 years

 The way to scale is to have lots of cores working together

15
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

CPU / Core / Hardware Thread

 The Intel i7-3960X

One CPU socket

Six activated cores

Each core supports two
hyperthreads
– Each core can only execute a

single instruction at a time, but
the data is fetched in parallel

 Total of 12 threads

Runtime.getRuntime().availableProcessors() = 12

16
1.2: B

enefits O
f Threads

Finding and Solving Deadlocks in Multi-Threaded Java Code

Japanese 'K' Computer

 In June 2011, could calculate 8.2 petaFLOPS
– 8 200 000 000 000 000 floating point operations per second

– Intel 8087 was 30 000 FLOPS, 273 billion times slower

– 548,352 cores from 68,544 2GHz 8-Core SPARC64 VIIIfx processors

By November 2011, it had surpassed 10 petaFLOPS

17
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

"Sequoia" At Lawrence Livermore National Lab

Used by USA's National Nuclear Security Administration
to simulate nuclear bombs

 June 2012: Delivers 16 petaflops
– 1.6 million cores

– 1.6 petabytes of memory

18
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code

Utilization Of Hardware

 Threading is software abstraction to keep hardware busy
– Otherwise, why put up with safety and liveness issues?

We want to utilize all our CPUs with application code
– Having too many serial sections means that not all CPUs are working

– Too much locking means we are busy with system code

19
1.1: H

istory O
f C

oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code 20

Threading Models

Preemptive multithreading (Native Threads)
– Operating system is responsible for forcing a context switch

– Threads can be swapped in the middle of an operation
• For example half-way through balance = balance + 100

Cooperative multithreading (Green Threads)
– Threads give up control at a stopping point

• Yield, sleep, wait

– Infinite loops could never give up control

Which One?
– Preemptive (native) is safer, but we get race conditions

– In modern JDKs, preemptive is used

1.1: H
istory O

f C
oncurrency

Finding and Solving Deadlocks in Multi-Threaded Java Code 21

10: Avoiding Liveness
Hazards

Safety first!

Finding and Solving Deadlocks in Multi-Threaded Java Code 22

10: Avoiding Liveness Hazards

 Fixing safety problems can cause liveness problems
– Don't indiscriminately sprinkle "synchronized" into your code

 Liveness hazards can happen through
– Lock-ordering deadlocks

• Typically when you lock two locks in different orders
• Requires global analysis to make sure your order is consistent

–Lesson: only ever hold a single lock per thread!

– Resource deadlocks
• This can happen with bounded queues or similar mechanisms

meant to bound resource consumption

10: Avoiding Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

10.1 Deadlock

Avoiding Liveness Hazards

23

Finding and Solving Deadlocks in Multi-Threaded Java Code 24

10.1 Deadlock

Classic problem is that of the "dining philosophers"
– We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
–sym - together, such as "symphony"
–poto - drink

• Ancient Greek philosophers used to get together to drink & think

 In our example, a philosopher needs two glasses to drink
– First he takes the right one, then the left one

– When he finishes drinking, he returns them and carries on thinking

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Legends For Example

 Thinking philosopher

Drinking philosopher

Changing state philosopher

Available cup

 Taken cup

25

5

5

5

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Table Is Ready, All Philosophers Are Thinking

26

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosophers 5 Wants To Drink, Takes Right Cup

27

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Is Now Drinking With Both Cups

28

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosophers 3 Wants To Drink, Takes Right Cup

29

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Is Now Drinking With Both Cups

30

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosophers 2 Wants To Drink, Takes Right Cup

But he has to wait for
Philosopher 3 to
finish his
drinking
session

31

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Finished Drinking, Returns Right
Cup

32

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Is Now Drinking With Both Cups

33

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Returns Left Cup

34

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Drinking Philosophers In Limbo

 The standard rule is that every philosopher first picks up
the right cup, then the left
– If all of the philosophers want to drink and they all pick up the right

cup, then they all are holding one cup but cannot get the left cup

35
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

A Deadlock Can Easily Happen With This Design

36

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Wants To Drink, Takes Right Cup

37

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Wants To Drink, Takes Right Cup

38

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Wants To Drink, Takes Right Cup

39

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Wants To Drink, Takes Right Cup

40

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Wants To Drink, Takes Right Cup

41

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlock!

All the philosophers are
waiting for their left
cups, but they will
never become
available

42

1

25

4 3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Resolving Deadlocks

Deadlocks can be discovered automatically by searching
the graph of call stacks, looking for circular dependencies
– ThreadMXBean can find deadlocks for us, but cannot fix them

 In databases, the deadlock is resolved by one of the
queries being aborted with an exception
– The query could then be retried

 Java does not have this functionality
– When we get a deadlock, there is no clean way to recover from it

– Prevention is better than the cure

43
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

How Do We Discover Deadlocks?

A lot of Java code contains subtle locking bugs
– Calling methods in different orders could cause a deadly embrace

– Calling alien methods could cause a call-back

– Limiting resources can cause deadlocks with dependent actions

Most of the time, deadlocks do not manifest themselves
– Usually never during testing

– Seldom during production, only if the system is really busy
• Often you will need to run the application for 5 days before it

happens, usually on a Friday afternoon to ruin your weekend

44
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Lock-ordering Deadlocks

 This code will cause deadlocks if called by two threads

45

public class LeftRightDeadlock {
 private final Object left = new Object();
 private final Object right = new Object();
 public void leftRight() {
 synchronized (left) {
 synchronized (right) {
 doSomething();
 }
 }
 }
 public void rightLeft() {
 synchronized (right) {
 synchronized (left) {
 doSomethingElse();
 }
 }
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Interleaving Of Call Sequence Causes Deadlock

46

A

B

lock left

lock right

leftRight()

rightLeft()

BLOCKED

trying to lock right

BLOCKED

trying to lock left

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Global Order Of Locks

A program will be free of lock-ordering deadlocks if all
threads acquire the locks they need in a fixed global order
– Thus we can solve the deadlock by changing rightLeft() to

47

 public void rightLeft() {
 synchronized (left) {
 synchronized (right) {
 doSomethingElse();
 }
 }
 }

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Global Order With Boozing Philosophers

We can solve the deadlock with the "dining philosophers"
by requiring that locks are always acquired in a set order
– For example, we can make a rule that philosophers always first take

the cup with the largest number

– And return the cup with the lowest number first

48
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Global Lock Ordering

We start with all the
philosophers thinking

49

1

25

4 3
4

3

21

5

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Takes Cup 5

Cup 5 has higher number
– Remember our rule!

50

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Takes Cup 2

Must take the cup with
the higher number
first
– In this case

cup 2

51

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Takes Cup 3

52

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Takes Cup 4

53

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Takes Cup 1 - Drinking

54

1

25

4 34

3

2

5

1 10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Returns Cup 1

Cups are returned in the
opposite order to what
they are acquired

55

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Takes Cup 1 - Drinking

56

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Returns Cup 1

57

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 1 Returns Cup 2

58

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Takes Cup 2 - Drinking

59

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 5 Returns Cup 5

60

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Takes Cup 5

61

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Returns Cup 2

62

1

25

4 34

2

5

1

3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 2 Returns Cup 3

63

1

25

4 4

5

1 2

3

3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Takes Cup 3 - Drinking

64

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Returns Cup 3

65

1

25

4 3

2

5

1

3

4

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 3 Returns Cup 4

66

1

25

3

2

5

1

4

4

3

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Takes Cup 4 - Drinking

67

1

25

4 34

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Returns Cup 4

68

1

25

4 3

3

21

4
5

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Philosopher 4 Returns Cup 5

69

1

25

4 3
4

3

2

5

1

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Dynamic Lock Order Deadlocks

 The LeftRightDeadlock example had an obvious deadlock

Often, it is not obvious what the lock instances are, e.g.

70

public boolean transferMoney(
 Account from, Account to,
 DollarAmount amount) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Checking Locks Are Held

 In our doActualTransfer(), assert we hold both locks

71

private boolean doActualTransfer(
 Account from, Account to, DollarAmount amount) {
 assert Thread.holdsLock(from);
 assert Thread.holdsLock(to);
 if (from.getBalance().compareTo(amount) >= 0) {
 from.debit(amount);
 to.credit(amount);
 return true;
 }
 return false;
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Causing The Deadlock With Transferring Money

Giorgos has accounts in Switzerland and in Greece
– He keeps on transferring money between them

• Whenever new taxes are announced, he brings money into Greece
• Whenever he gets any money paid, he transfers it to Switzerland
• Sometimes these transfers can coincide

 Thread 1 is moving money from UBS to Alpha Bank

 Thread 2 is moving money from Alpha Bank to UBS

 If this happens at the same time, it can deadlock

72

transferMoney(ubs, alpha, new DollarAmount(1000));

transferMoney(alpha, ubs, new DollarAmount(2000));

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Fixing Dynamic Lock-Ordering Deadlocks

 The locks for transferMoney() are outside our control
– They could be sent to us in any order

We can induce an ordering on the locks
– For example, we can use System.identityHashCode() to get a number

representing this object
• Since this is a 32-bit int, it is technically possible that two different

objects have exactly the same identity hash code
• In that case, we have a static lock to avoid a deadlock

73
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

public boolean transferMoney(Account from, Account to,
 DollarAmount amount) {
 int fromHash = System.identityHashCode(from);
 int toHash = System.identityHashCode(to);
 if (fromHash < toHash) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 } else if (fromHash > toHash) {
 synchronized (to) {
 synchronized (from) {
 return doActualTransfer(from, to, amount);
 }
 }
 } else {
 synchronized (tieLock) {
 synchronized (from) {
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 }
 }
}

74
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Imposing Natural Order

 Instead of System.identityHashCode(), we define an order
– Such as account number, employee number, etc.

– Or an order defined for the locks used

75

public class MonitorLock implements Comparable<MonitorLock> {
 private static AtomicLong nextLockNumber = new AtomicLong();
 private final long lockNumber = nextLockNumber.getAndIncrement();
 public int compareTo(MonitorLock o) {
 if (lockNumber < o.lockNumber) return -1;
 if (lockNumber > o.lockNumber) return 1;
 return 0;
 }
 public static MonitorLock[] makeGlobalLockOrder(
 MonitorLock... locks) {
 MonitorLock[] result = locks.clone();
 Arrays.sort(result);
 return result;
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlocks Between Cooperating Objects

 In this example, the deadlock is more subtle
– Taxi is an individual taxi with a location and a destination

– Dispatcher represents a fleet of taxis

Spot the deadlock

76
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Taxi, Representing An Individual Vehicle
public class Taxi {
 @GuardedBy("this")
 private Point location, destination;
 private final Dispatcher dispatcher;

 public Taxi(Dispatcher dispatcher) {
 this.dispatcher = dispatcher;
 }

 public synchronized Point getLocation() {
 return location;
 }

 public synchronized void setLocation(
 Point location) {
 this.location = location;
 if (location.equals(destination))
 dispatcher.notifyAvailable(this);
 }
}

77
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Dispatcher: Managing A Fleet Of Taxis
public class Dispatcher {
 @GuardedBy("this")
 private final Set<Taxi> taxis = new HashSet<>();
 @GuardedBy("this")
 private final Set<Taxi> availableTaxis = new HashSet<>();

 public synchronized void notifyAvailable(Taxi taxi) {
 availableTaxis.add(taxi);
 }

 public synchronized Image getImage() {
 Image image = new Image();
 for (Taxi taxi : taxis) {
 image.drawMarker(taxi.getLocation());
 }
 return image;
 }
}

78
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

How To Deadlock The Taxi Industry

Or in Greece you can simply announce that you will
deregulate the taxi industry - that causes real deadlocks
– In 2011, at height of tourist season, taxis went on strike for 3 weeks!

79

A setLocation()

BLOCKED

synchronized(taxi)
dispatcher.notifyAvailable()
synchronized(dispatcher)

B getImage()
synchronized(dispatcher)

taxi.getLocation()
synchronized(taxi)

BLOCKED

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Open Calls

Calling an alien method with a lock held is difficult to
analyze and therefore risky

Both Taxi and Dispatcher break this rule

Calling a method with no locks held is called an open call
– Makes it much easier to reason about liveness

80
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Refactored Taxi.setLocation()

We should not call alien methods whilst holding locks

Here we split the method up into parts that need the lock
and those that call alien methods

81

public void setLocation(Point location) {
 boolean reachedDestination;
 synchronized (this) {
 this.location = location;
 reachedDestination = location.equals(destination);
 }
 if (reachedDestination) {
 dispatcher.notifyAvailable(this);
 }
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Refactored Dispatcher.getImage()

We make a copy of the set to prevent race conditions

82

public Image getImage() {
 Set<Taxi> copy;
 synchronized (this) {
 copy = new HashSet<>(taxis);
 }
 Image image = new Image();
 for (Taxi taxi : copy) {
 image.drawMarker(taxi.getLocation());
 }
 return image;
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Benefit Of Open Calls

Strive to use open calls throughout your program

Programs that rely on open calls are far easier to analyze
for deadlock-freedom than those that allow calls to alien
methods with locks held

Alien method calls with lock held are probably the biggest
cause of deadlocks "in the field"

83
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Open Call In Vector

 In Sun Java 6 Vector.writeObject() method is synchronized
– This is to provide thread safety during writing

– However, since it calls the alien "defaultWriteObject()" it can
deadlock
• http://www.javaspecialists.eu/archive/Issue184.html

84

private synchronized void writeObject(ObjectOutputStream s)
 throws IOException {
 s.defaultWriteObject();
}

10.1 D
eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

IBM Avoids This Problem With An Open Call
private void writeObject(ObjectOutputStream stream)
 throws IOException {
 Vector<E> cloned = null;
 // this specially fix is for a special dead-lock in customer
 // program: two vectors refer each other may meet dead-lock in
 // synchronized serialization. Refer CMVC-103316.1
 synchronized (this) {
 try {
 cloned = (Vector<E>) super.clone();
 cloned.elementData = elementData.clone();
 } catch (CloneNotSupportedException e) {
 // no deep clone, ignore the exception
 }
 }
 cloned.writeObjectImpl(stream);
}

private void writeObjectImpl(ObjectOutputStream stream)
 throws IOException {
 stream.defaultWriteObject();
}

85
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

OpenJDK 7 Also Uses An Open Call
private void writeObject(ObjectOutputStream s)
 throws IOException {
 final ObjectOutputStream.PutField fields = s.putFields();
 final Object[] data;
 synchronized (this) {
 fields.put("capacityIncrement", capacityIncrement);
 fields.put("elementCount", elementCount);
 data = elementData.clone();
 }
 fields.put("elementData", data);
 s.writeFields();
}

86
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Resource Deadlocks

We can also cause deadlocks waiting for resources

 For example, say you have two DB connection pools
– Some tasks might require connections to both databases

– Thus thread A might hold semaphore for D1 and wait for D2, whereas
thread B might hold semaphore for D2 and be waiting for D1

 Thread dump and ThreadMXBean does not show this as a
deadlock!

87
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Our DatabasePool - Connect() And Disconnect()

public class DatabasePool {
 private final Semaphore connections;
 public DatabasePool(int connections) {
 this.connections = new Semaphore(connections);
 }

 public void connect() {
 connections.acquireUninterruptibly();
 System.out.println("DatabasePool.connect");
 }

 public void disconnect() {
 System.out.println("DatabasePool.disconnect");
 connections.release();
 }
}

88
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

ThreadMXBean Does Not Detect This Deadlock

DatabasePool.connect
DatabasePool.connect

89
10.1 D

eadlock

Finding and Solving Deadlocks in Multi-Threaded Java Code

Dependent Tasks Causing Liveness Issues

 Tasks that depend on others in pool can cause a thread-
starvation deadlock

90

ExecutorService pool = Executors.newFixedThreadPool(3);
final CountDownLatch latch = new CountDownLatch(4);
for (int i = 0; i < 4; i++) {
 pool.submit(new Runnable() {
 public void run() {
 System.out.println("countdown");
 latch.countDown();
 try {
 System.out.println("waiting");
 latch.await();
 } catch (InterruptedException e) {
 System.out.println("interrupting");
 Thread.currentThread().interrupt();
 }
 System.out.println("done");
 }
 });
}

8.1: Tasks A
nd Execution Policies

Finding and Solving Deadlocks in Multi-Threaded Java Code

Thread Pool Blocked Up

All the threads are waiting for "task" to be completed
– Bounded thread pools and bounded queues can cause deadlocks

91

task

work queue 0 WAITING

1 WAITING

2 WAITING

8.1: Tasks A
nd Execution Policies

Finding and Solving Deadlocks in Multi-Threaded Java Code

10.2 Avoiding And
Diagnosing Deadlocks

Avoiding Liveness Hazards

92

Finding and Solving Deadlocks in Multi-Threaded Java Code 93

10.2 Avoiding And Diagnosing Deadlocks

 If you only ever acquire one lock, you cannot get a lock-
ordering deadlock
– This is the easiest way to avoid deadlocks, but not always practical

 If you need to acquire multiple locks, include lock
ordering in your design
– Important to specify and document possible lock sequences

– Identify where multiple locks could be acquired

– Do a global analysis to ensure that lock ordering is consistent
• This can be extremely difficult in large programs

Use open calls whenever possible
– Do not call alien methods whilst holding a lock

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Unit Testing For Lock Ordering Deadlocks

Code typically has to be called many times before a
deadlock happens

How many times do you need to call it to prove that there
is no deadlock?
– Nondeterministic unit tests are bad - they should either always pass

or always fail

94
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Adding A Sleep To Cause Deadlocks

 In the transferMoney() method, a deadlock occurs if after
the first lock is granted, the first thread is swapped out
and another thread requests the second lock

We can force this to happen by sleeping a short while
after requesting the first lock

95

public class Bank {
 public boolean transferMoney(Account from, Account to,
 DollarAmount amount) {
 synchronized (from) {
 sleepAWhileForTesting();
 synchronized (to) {
 return doActualTransfer(from, to, amount);
 }
 }
 }
 protected void sleepAWhileForTesting() {}
}

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

In Our Unit Test We Override The Class

We make the sleepAWhileForTesting() method sleep
– In production, when we use only the normal Bank, the empty method

will be optimized away by the HotSpot compiler

96

public class SlowBank extends Bank {
 private final long timeout;
 private final TimeUnit unit;
 public SlowBank(long timeout, TimeUnit unit) {
 this.timeout = timeout;
 this.unit = unit;
 }
 protected void sleepAWhileForTesting() {
 try {
 unit.sleep(timeout);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
}

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Verifying Thread Deadlocks

 ThreadMXBean has two methods for finding deadlocks
– findMonitorDeadlockedThreads()

• Includes only "monitor" locks, i.e. synchronized
• Only way to find deadlocks in Java 5

– findDeadlockedThreads()
• Includes "monitor" and "owned" (Java 5) locks
• Preferred method to test for deadlocks
• But, does not find deadlocks between semaphores

– See http://www.javaspecialists.eu/archive/Issue130.html

97
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

public class BankDeadlockTest {
 private final static ThreadMXBean tmb =
 ManagementFactory.getThreadMXBean();

 private void checkThatThreadTerminates(Thread thread)
 throws InterruptedException {
 for (int i = 0; i < 2000; i++) {
 thread.join(50);
 if (!thread.isAlive()) return;
 if (isThreadDeadlocked(thread.getId())) {
 fail("Deadlock detected!");
 }
 }
 fail(thread + " did not terminate in time");
 }

 private boolean isThreadDeadlocked(long tid) {
 long[] ids = tmb.findDeadlockedThreads();
 if (ids == null) return false;
 for (long id : ids) {
 if (id == tid) return true;
 }
 return false;
 }

98
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

 @Test
 public void testForTransferDeadlock()
 throws InterruptedException {
 final Account alpha = new Account(new DollarAmount(1000));
 final Account ubs = new Account(new DollarAmount(1000000));
 final Bank bank = new SlowBank(100, TimeUnit.MILLISECONDS);

 Thread alphaToUbs = new Thread("alphaToUbs") {
 public void run() {
 bank.transferMoney(alpha, ubs, new DollarAmount(100));
 }
 };
 Thread ubsToAlpha = new Thread("ubsToAlpha") {
 public void run() {
 bank.transferMoney(ubs, alpha, new DollarAmount(100));
 }
 };

 alphaToUbs.start();
 ubsToAlpha.start();

 checkThatThreadTerminates(alphaToUbs);
 }
}

99
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

We see the deadlock within about 100 milliseconds

 If we fix the transferMoney() method, it also completes
within about 100 milliseconds
– This is the time that we are sleeping for testing purposes

Remember that the empty sleepAWhileForTesting()
method will be optimized away by HotSpot

100

Output With Broken TransferMoney() Method

junit.framework.AssertionFailedError: Deadlock detected!
 at BankDeadlockTest.checkThatThreadTerminates(BankDeadlockTest.java:20)
 at BankDeadlockTest.testForTransferDeadlock(BankDeadlockTest.java:55)

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Timed Lock Attempts

Another technique for solving deadlocks is to use the
timed tryLock() method of Java 5 locks (more in ch 13)

 Two things to consider
– When a timed lock attempt fails, we do not necessarily know why

• Could be deadlock
• Could be another thread holding the lock whilst in an infinite loop
• Could be some thread just taking a lot longer than expected

– ThreadMXBean will show the thread as deadlocked whilst it is
waiting for the lock

101
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlock Analysis With Thread Dumps

 The ThreadMXBean can be invoked directly to find
deadlocks between monitors or Java 5 locks

However, we can also cause a thread dump in many ways:
– Ctrl+Break on Windows or Ctrl-\ on Unix

– Invoking "kill -3" on the process id

– Calling jstack on the process id
• Only shows deadlocks since Java 6

 Intrinsic locks typically show more information of where
they were acquired than the explicit Java 5 locks

102
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Deadlock Analysis With Thread Dumps

 Thread dump from a real system (names changed)

 It is useful to have unique threads names

 The stack trace confirms the deadlock

103

Found one Java-level deadlock:
=============================
"ApplicationServerThread-0":
 waiting to lock monitor 0x080f0cdc
 (object 0x650f7f30, a MumbleDBConnection),
 which is held by "ApplicationServerThread-1"

"ApplicationServerThread-1":
 waiting to lock monitor 0x080f0ed4
 (object 0x6024ffb0, a MumbleDBCallableStatement),
 which is held by "ApplicationServerThread-0"

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Stack Information Shows Where It Comes From
Java stack information for the threads listed above:
===
"ApplicationServerThread-0":
 at MumbleDBConnection.remove_statement
 - waiting to lock <0x650f7f30> (a MumbleDBConnection)
 at MumbleDBStatement.close
 - locked <0x6024ffb0> (a MumbleDBCallableStatement)
 ...

"ApplicationServerThread-1":
 at MumbleDBCallableStatement.sendBatch
 - waiting to lock <0x6024ffb0>
 (a MumbleDBCallableStatement)
 at MumbleDBConnection.commit
 - locked <0x650f7f30> (a MumbleDBConnection)
 ...

Found 1 deadlock.

104
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

What Caused The Deadlock?

 Inside the JDBC driver, different calls acquired locks in
different orders
– JDBC vendor was trying to build a thread-safe driver

• But then ended up writing a potential deadlock

– This could be fixed in the JDBC driver by imposing a global order

However, in the system the JDBC connection was shared
by multiple threads
– This caused the bug to appear

Solution: single threaded access to each individual
connection

105
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Stopping Deadlock Victims

 In extreme situations threads that are deadlocked in the
WAITING state can be stopped as deadlock victims

 This only works with "owned" Java 5 locks, not monitors
– A thread in the BLOCKED state cannot be stopped

We can throw a special exception with Thread.stop()

106

public class DeadlockVictimError extends Error {
 private final Thread victim;
 public DeadlockVictimError(Thread victim) {
 super("Deadlock victim: " + victim);
 this.victim = victim;

 }
 public Thread getVictim() { return victim; }
}

10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

public class DeadlockArbitrator {
 private static final ThreadMXBean tmb =
 ManagementFactory.getThreadMXBean();

 public boolean tryResolveDeadlock() throws InterruptedException {
 return tryResolveDeadlock(3, 1, TimeUnit.SECONDS);
 }

 public boolean tryResolveDeadlock(
 int attempts, long timeout, TimeUnit unit)
 throws InterruptedException {
 for (int i = 0; i < attempts; i++) {
 long[] ids = tmb.findDeadlockedThreads();
 if (ids == null) return true;
 Thread t = findThread(ids[i % ids.length]);
 if (t == null)
 throw new IllegalStateException("Could not find thread");
 t.stop(new DeadlockVictimError(t));
 unit.sleep(timeout);
 }
 return false;
 }
 private Thread findThread(long id) {
 for (Thread thread : Thread.getAllStackTraces().keySet()) {
 if (thread.getId() == id) return thread;
 }
 return null;
 }
}

107
10.2 Avoiding A

nd D
iagnosing D

eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

Only use in extreme circumstances
– Code that is outside your control and that deadlocks

– Where you cannot prevent the deadlock

Remember, it only works with Java 5 locks (more later)

108

Applicability Of DeadlockArbitrator 10.2 Avoiding A
nd D

iagnosing D
eadlocks

Finding and Solving Deadlocks in Multi-Threaded Java Code

10.3 Other Liveness Hazards

Avoiding Liveness Hazards

109

Finding and Solving Deadlocks in Multi-Threaded Java Code 110

10.3 Other Liveness Hazards

Deadlock is the most common liveness hazard
– Even though there is no way to cleanly recover, it is usually fairly

easy to recognize with the thread dumps

However, other liveness hazards can be more difficult to
find, for example
– Starvation

– Missed signals (covered in Chapter 14)

– Livelock

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 111

Threading Problems – Starvation

 In concurrent applications, a thread could perpetually be
denied resources.

Starvation can cause OutOfMemoryError or prevent a
program from ever completing.

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 112

Starvation In Java

Most common situation is when some low priority thread
is ignored for long periods of time, preventing it from ever
finishing work

 In Java, thread priorities are just a hint for the operating
system. The mapping to system priorities is system
dependent

 Tweaking thread priorities might result in starvation

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

ReadWriteLock Starvation

When readers are given priority, then writers might never
be able to complete (Java 5)

But when writers are given priority, readers might be
starved (Java 6)

Only use ReadWriteLock when you are sure that you will
not continuously be acquiring locks

See http://www.javaspecialists.eu/archive/Issue165.html

113
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

Java 5 ReadWriteLock Starvation

We first acquire some
read locks

We then acquire one
write lock

Despite write lock waiting,
read locks are still issued

 If enough read locks are
issued, write lock will
never get a chance and
the thread will be starved!

114
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

ReadWriteLock In Java 6

 Java 6 changed the policy and
now read locks have to wait
until the write lock has been
issued

However, now the readers can
be starved if we have a lot of
writers

115
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 116

Livelock

 Thread is running, but still not making progress

 Typically forever retrying a failed operation
– Eventually you need to give up

Often occurs in transactional messaging applications,
where the messaging infrastructure rolls back a
transaction if a message cannot be processed
successfully, and puts it back at the head of the queue.
– This form of livelock often comes from overeager error-recovery

code that mistakenly treats an unrecoverable error as a recoverable
one.

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 117

Real-World Scenario

 Two polite people meet in a narrow corridor. Each steps
to the side to make room for the other. They keep on
doing this at the same time, never getting past each other.
– Fortunately people are not that stupid

• But computers are!

Can happen especially in code that tries to recover from a
deadlock situation
– Only possible with Java 5 locks, in a controlled fashion

10.3 O
ther Liveness H

azards

Finding and Solving Deadlocks in Multi-Threaded Java Code

Livelock In IntelliJ IDEA

118
10.3 O

ther Liveness H
azards

Finding and Solving Deadlocks in Multi-Threaded Java Code 119

10.4: Where To From Here?

Finding and Solving Deadlocks in Multi-Threaded Java Code

The Java Specialists' Newsletter

Written for programmers who use Java professionally

Please subscribe for free here:
– http://www.javaspecialists.eu/archive/subscribe.jsp

120

Finding and Solving Deadlocks in Multi-Threaded Java Code

Advanced Java Training With ExitCertified

Concurrency Specialist Course
– More of what we did today, also looking at safety, Fork/Join, etc.

 Java Specialist Master Course
– Threading, Java NIO, reflection, data structures, performance

Design Patterns Course
– The most useful Gang-of-Four patterns, in Java

 http://www.javaspecialists.eu

 http://www.exitcertified.com/sun-microsystems-training/
java-concurrency-JAV-404.html

121

Finding and Solving Deadlocks in Multi-Threaded Java Code 122

10: Exercises

Avoiding Liveness Hazards

Finding and Solving Deadlocks in Multi-Threaded Java Code 123

Exercise 10.1: Test Java2Demo For Liveness

Run the Java2Demo and check for liveness, such as
– Deadlock

• You would notice that part of the program stops responding

– Livelock
• Typically your CPU is very high, without any real progress made

Please download the workshop exercises from:
– http://tinyurl.com/conc-zip

Workshop support information is available here:
– http://javaspecialists.eu/courses/concurrency/exitcertified.jsp

10: Exercises

Finding and Solving Deadlocks in Multi-Threaded Java Code 124

The End – Thank You!

http://www.javaspecialists.eu

